
Computers & Graphics 27 (2003) 133–141

Technical section

On intrinsic representations of 3D polygons
for shape blending

Hui Chen, Wenping Wang*

Department of Computer Science and Information Systems, The University of Hong Kong, CYC421, HKU Main Campus,

Pokfulam Road, Hong Kong, China

Accepted 18 October 2002

Abstract

An intrinsic representation of a geometric object comprises a set of parameters that are invariant under Euclidean

transformations and determine the shape and size of the object uniquely. Unlike the case of a two-dimensional polygon

which has essentially only one intrinsic representation, a three-dimensional (3D) polygon allows several variations. We

study three different intrinsic representations of a 3D polygon, focusing on properties regarding their applications in

shape blending. We show that only one of these representations, which is a natural extension to the intrinsic functions

of a 3D differentiable curve, is suitable for shape blending, while the others lead to discontinuous shape transformation.

Detailed discussions about the evaluation criteria, numerical sensitivity, and an inherent difficulty in shape blending of

3D polygons are also presented.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shape representation is an important topic in

computer graphics, geometric modeling [1], computa-

tional topology [2], computer vision [3], and pattern

recognition [4]. A shape representation is a representa-

tion from which the shape of a geometric entity can be

retrieved. In this paper, we confine ourselves to the study

of intrinsic representations of a three-dimensional (3D)

polygon. An intrinsic representation of a polygon

comprises a set of parameters that are invariant under

Euclidean transformations and determine the shape and

size of the polygon uniquely, up to a Euclidean

transformation, i.e., rotation and translation. More

specifically, besides being invariant under Euclidean

transformations, an intrinsic representation must be

such that (1) two polygons of different shapes or sizes

give rise to two different representations; (2) two

polygons with the same shape and size, but possibly

different positions and orientations, have the same

representation.

Let G ¼ fPig
n
i¼0 denote a 3D polygon of n þ 1

vertices, where PiAE3: We call Pi � Pi�1 the side vector,

jPi � Pi�1j the side length, and Ei � ðPi � Pi�1Þ=jPi �
Pi�1j the unit side vector. The angle between two

consecutive side vectors is called a vertex angle. Clearly,

the side length and vertex angle are invariant under

Euclidean transformations. Hence, an intrinsic presen-

tation of a polygon can be defined in terms of these

invariant parameters. An intrinsic representation is

called a local intrinsic representation if it is defined by

the invariant parameters based on the local geometry of

a polygon, rather than the global geometry.

One of the applications of intrinsic representations of

polygons is shape blending, also known as shape

averaging, shape interpolation, metamorphosis, or morph-

ing in the literature. A shape blending algorithm takes

two objects, called source objects, as input, and produces
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a parameterized inbetween object changing continuously

from the shape of one source object to the shape of the

other. Shape blending has widespread applications in

illustration, computer animation, and industrial design

[5–7]. In general, the shape concerned can be represented

by a two-dimensional (2D) or 3D curve (open or closed)

[8,7], a polyhedron [9,10], or a 2D image [11]. A

comprehensive literature survey on 3D metamorphosis

can be found in [12].

The intrinsic representation of a 2D polygon based on

its side lengths and vertex angles is well known and

serves as the basis of the shape blending algorithm for

2D polygons in [8]. Although various shape representa-

tions, including some intrinsic ones, of 3D polygons,

have been proposed for shape blending, there is a lack of

systematic study on intrinsic representations of a 3D

polygon. Consequently, existing shape blending meth-

ods for 3D polygons either do not possess some basic

shape preserving properties or do not produce contin-

uous shape transformation in general.

While a 2D polygon has only one local intrinsic

representation, a 3D polygon has several different local

intrinsic representations that appear to be similar to

each other. One of these representations is the discrete

generalization of the intrinsic functions of a 3D

differentiable curve, i.e., the curvature and torsion in

the arclength of the curve. We shall show that this

representation produces continuous shape transforma-

tion, while the others may cause discontinuity in shape

blending.

The remainder of the paper is organized as follows. In

Section 2, we review related work and give some

preliminaries. In Section 3, three intrinsic representa-

tions of 3D polygons are introduced. In Section 4, we

study the properties of the acceptable intrinsic repre-

sentation in the light of its application to shape

blending. The paper concludes in Section 5.

2. Related work and preliminaries

Given two source objects GA and GB; the goal of a

shape blending algorithm is to transform the shape of

GA into that of GB in a continuous and natural manner.

There are two major steps in shape blending: correspon-

dence and interpolation. The correspondence problem

concerns establishing a correspondence between features

on GA and those of GB [11,13,14]; here the features may

be points, line segments, or other geometric entities.

Once a correspondence has been obtained, the inter-

polation problem concerns how features on GA move

into their corresponding features on GB; producing a

sequence of inbetween objects GðtÞ from GA to GB;
tA½0; 1�: Different shape blending methods use different

shape representations, and most of these methods

perform linear interpolation between the representations

of two source objects.

The intrinsic representation of 2D polygons is studied

in [8] and used there to devise a shape blending method

for 2D polygons. Given a polygon G ¼ fPig
n
i¼0; PiAE2;

this intrinsic representation consists of the side length

ci ¼ jPi � Pi�1j; i ¼ 1; 2;y; n; and the vertex angle

between vector Pi � Pi�1 and vector Piþ1 � Pi; i ¼ 1;
2;y; n � 1:
A shape interpolation scheme based on an implicit

representation of 3D polygons is proposed in [7]. This

representation consists of the side lengths and the unit

side vectors of the polygon, with a unit side vector

represented by a point on S2: The shape interpolation is

carried out by performing a linear interpolation between

two corresponding side lengths and a spherical linear

interpolation between two corresponding unit side

vectors on S2: Since the unit side vectors are represented
in a coordinate-dependent manner, this representation is

not intrinsic. As a consequence, the shape transforma-

tion produced with this representation is not invariant

under Euclidean transformations of input source poly-

gons.

An intrinsic representation of a 3D polygon is

proposed in [15] for shape blending. We skip the details

of this representation, since it is a particular case of the

more general class of local intrinsic representations that

we will discuss in the next section. We just point out that

the shape blending method proposed in [15] based on

this representation does not, in general, produce a

continuous shape transformation.

Shape interpolation based on an intrinsic representa-

tion entails the following steps: (1) Convert the

coordinate representations of the source polygons into

intrinsic representations; (2) interpolate the parameters

in the intrinsic representations of the source polygons to

obtain the intrinsic representation of an inbetween

polygon; (3) convert the inbetween intrinsic representa-

tion into the coordinate representation of the inbetween

polygon.

Stable conversions between the intrinsic representa-

tion and the coordinate representation as required above

is critical to ensuring smooth shape transformation;

however, some degenerate configurations, such as the

collinearity of consecutive vertices, make the conversion

unreliable or ill-defined. While effective heuristics are

available to overcome some of these degeneracies,

discontinuous shape transformation becomes unavoid-

able in the case where two source polygons with no three

consecutive vertices being collinear result in an inbetw-

een polygon with three collinear consecutive vertices.

More specifically, when converting the Euclidean

coordinates to an intrinsic representation of a fixed 3D

polygon G; a local orthogonal coordinate frame needs to

be defined at each vertex so as to specify the position of

a vertex using local intrinsic parameters with respect to
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its preceding vertices, and such a local coordinate frame

is most naturally defined by relative vectors connecting

consecutive vertices of the polygon. When three

consecutive vertices of the polygon are collinear, such

a local frame cannot be defined locally, but can be

duplicated from the preceding frame which has been

defined. However, in the case of a parameterized

inbetween 3D polygon GðtÞ ¼ fPiðtÞg
n
i¼0; if three con-

secutive vertices Pi�3ðtÞ; Pi�2ðtÞ and Pi�1ðtÞ are collinear
at some value t ¼ t0 but otherwise non-collinear in a

neighborhood of t0; then the local frame at Pi�1ðt0Þ is
unstable, i.e., it may flip abruptly when the parameter t

crosses t0; and this may result in discontinuous shape

transformation. (See more discussions about this in the

next section.) Hence, it is necessary to avoid producing

collinear consecutive vertices on the inbetween polygon,

unless the corresponding vertices on both source

polygons are collinear.

3. Three intrinsic representations

In this section, we introduce three different local

intrinsic representations of a 3D polygon. Let G be a 3D

polygon with vertices Pi; i ¼ 0; 1;y; n: Denote Qi ¼
Pi � Pi�1: The unit side vector is defined by Ei ¼
Qi=jQi j: When the three vertices Pi�1;Pi;Piþ1 are not

collinear, the normal vector at Pi is Ni ¼ ðQi �
Qiþ1Þ=jQi � Qiþ1j: When Pi�1; Pi and Piþ1 are collinear,

we set Ni equal to Ni�1; assuming that the initial normal

vector N0 at vertex P0 has been specified so as to make

this recursive definition valid. In this way, normal

vectors at all vertices are well defined.

Given the polygon G; the side length jPi � Pi�1j
should be chosen as a parameter in an intrinsic

representation, since it dictates the size of the polygon.

We also need to represent the direction of a side vector

Pi � Pi�1 with respect to its preceding side vector Pi�1 �
Pi�2: To derive a local representation of this direction,

we define a local coordinate system at Pi�1 spanned by

the following three orthogonal vectors: the unit normal

vector R1 � Ni�2; the unit side vector R2 � Ei�1; and
their cross product R3 � Ni�2 � Ei�1: Then we use two

angles, longitude and latitude, in spherical coordinates

with respect to the frame fPi�1;R1;R2;R3g to represent

the direction of Ei; which can be identified with a point

on S2 centered at Pi�1: A spherical coordinate system is

shown in Fig. 1. The Z-axis points to the north pole and

the equator plane is determined by the X - and Y -axis.

The following are three natural ways to define a

spherical coordinate system with respect to the frame

fPi�1;R1;R2;R3g; by matching up the axes X ; Y and Z

with the axes R1; R2 and R3; following the right-handed

rule. The resulting combinations are: ð1Þ X ¼ R1; Y ¼
R2; Z ¼ R3; ð2Þ X ¼ R2; Y ¼ R3; Z ¼ R1; and ð3Þ X ¼
R3; Y ¼ R1; Z ¼ R2: These are shown in Figs. 2, 3

and 4, respectively. All these three choices give valid

local intrinsic shape representations of a 3D polygon

with local shape parameters. For the purpose of

representing a fixed 3D polygon, one choice is just as

good as another. But they exhibit significant difference

when applied to blending the shapes of two 3D

polygons, as shown by the following analysis.

Choice (1): Referring to Fig. 2, the parameter domain

is ðyi;fiÞA½�p; pÞ � ½�p=2; p=2�: The collinearity of

Pi�2; Pi�1 and Pi is characterized by ðyi;fiÞ ¼
ð�p=2; 0Þ or ðyi;fiÞ ¼ ðp=2; 0Þ; Pi�1 is outside the line

segment Pi�2Pi when ðyi;fiÞ ¼ ð�p=2; 0Þ; and Pi�1 is

between Pi�2 and Pi when ðyi;fiÞ ¼ ðp=2; 0Þ: That is,

both parameter points corresponding to collinearity are

interior to the domain ½�p;pÞ � ½�p=2; p=2�: Since shape
interpolation corresponds to linear interpolation

in the domain ðyi;fiÞA½�p; pÞ � ½�p=2; p=2�; the colli-

nearity of three consecutive vertices on an inbetween

polygon can occur as the result of interpolating two

source polygons with their corresponding vertices being

non-collinear. Consequently, a shape blending method

based on this choice may produce discontinuous shape

transformations, according to the remark at the end of

Section 2. This has also been confirmed by our

experiments.

Choice (2): Referring to Fig. 3, the parameter domain

is again ðyi;fiÞA½�p; pÞ � ½�p=2; p=2�: The collinearity

of Pi�2; Pi�1; and Pi is characterized by ðyi;fiÞ ¼
ð�p; 0Þ or ðyi;fiÞ ¼ ð0; 0Þ: Since the point ðyi;fiÞ ¼
ð0; 0Þ is interior to the domain ½�p; pÞ � ½�p=2; p=2�;
the collinearity of three consecutive vertices on

an inbetween polygon can again occur as the result of

interpolating two source polygons with their

corresponding vertices being non-collinear. This

choice is made in [15], and the above analysis explains

why the shape blending method presented there

fails to produce continuous shape transformation in

some cases.

Fig. 1. Spherical coordinates: ri ; yiA½�p; pÞ; fiA½�p=2; p=2�:
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Choice (3): Referring to Fig. 4, the parameter domain

is ðyi;fiÞA½�p;pÞ � ½0; p�: The collinearity of Pi�2; Pi�1

and Pi is characterized by fi ¼ 0 or p: That is, the

parameter points ðyi;fiÞ corresponding to collinearity

are on two opposite boundary sides of the domain

½�p; pÞ � ½0; p�: Since shape interpolation corresponds to

linear interpolation within the convex domain ½�p; pÞ �
½0; p� of ðyi;fiÞ; if the parameter points of two source

polygons are not both on the boundary sides fi ¼ 0 or

p; then their interpolated parameter point is not on the

boundary sides fi ¼ 0 or p; that is, the collinearity of

three consecutive vertices will not result from two source

polygons whose corresponding vertices are non-colli-

near. We will see in the next section that this intrinsic

representation yields continuous shape transformation

in shape blending. Since in this choice the side vector Ei

is used as the Z-axis vector of the local coordinate

system, for the ease of reference, the intrinsic represen-

tation based on choice (3) will be called SVN (Side

Vector for North) representation, and the corresponding

shape blending method will be called the SVN method.

We recap the parameters in the SVN representation in

order to facilitate subsequent discussions. Given a

polygon G with vertices Pi; i ¼ 0; 1;y; n; there are

three types of intrinsic parameters in the SVN

representation of G: See Fig. 4. The first is the side

length ci ¼ jPi � Pi�1j: The second is the angle fi ¼
arccosðEi�1EiÞA½0; p� between the unit side vectors

Ei�1 ¼ ðPi�1 � Pi�2Þ=jPi�1 � Pi�2j and Ei ¼ ðPi � Pi�1Þ=
jPi � Pi�1j: The third is the directed angle yiA½�p; pÞ
between Ni�2 and Ni�1; with magnitude jyi j ¼
arccosðNi�2Ni�1Þ and sign being the same as the sign

of ðPi�1 � Pi�2ÞðNi�2 � Ni�1Þ: With these parameters,

the intrinsic SVN representation of G is given by

OðGÞ � ffcig
n
i¼1; ffig

n
i¼2; fyig

n
i¼3g:

Clearly, the two shape parameters yi and fi used in

the SVN representation are discrete extensions of the

Fig. 2. Choice (1): (a) spherical coordinates; (b) the parameter domain of ðyi ;fiÞ and the collinearity points: p1 ¼ ð�p=2; 0Þ;
p2 ¼ ðp=2; 0Þ:

Fig. 3. Choice (2): (a) spherical coordinates; (b) the parameter domain of ðyi;fiÞ and the collinearity points: p1 ¼ ð�p; 0Þ; p2 ¼ ð0; 0Þ:
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intrinsic functions of a 3D differentiable curve [16]; yi is

the angle between two adjacent ‘‘osculating’’ planes and

fi is the angle between two adjacent ‘‘tangent lines’’

(side vectors).

Since an intrinsic representation captures only the

shape and size of a polygon, we need to introduce a

complete representation to incorporate information

about the position and orientation of a polygon, in

addition to its shape and size. To this end, we use the

first vertex P0 ¼ ðx0; y0; z0Þ; the first unit side vector E1;
and select a normal vector N0 at P0; which is

perpendicular to E1; N0 can be set equal to N1 or the

first properly defined normal vector unless the entire

polygon is contained in a straight line. See Fig. 5. A

complete representation of G is thus given by

#OðGÞ � fP0;Og
[

OðGÞ; ð1Þ

where O is the 3� 3 orthogonal matrix ½N0;E1;N0 �
E1�:

4. Analysis

We have introduced in the last section three intrinsic

representations of a 3D polygon, and pointed out that

the first two may lead to discontinuous shape transfor-

mation. In this section, we concentrate on the third

intrinsic representation, called the SVN representation,

in the light of its application to shape blending. First,

formulas for interpolating intrinsic shape parameters are

derived in order to show that the SVN representation

ensures the continuity of shape metamorphosis. Then we

show that the SVN method satisfies certain basic

requirements for shape blending. We also discuss an

inherent difficulty in 3D polygon shape blending, which

causes the sensitivity of an inbetween polygon to source

polygons.

4.1. Interpolation of shape parameters

Let two 3D polygons be given by GA ¼ fPA
i g

n
i¼0 and

GB ¼ fPB
i g

n
i¼0; together with a one-to-one correspon-

dence between the vertices PA
i and PB

i : The following

three steps are required for producing an inbetween

polygon: (1) compute the complete representations
#OðGAÞ and #OðGBÞ; (2) the parameters in #OðGAÞ and
#OðGBÞ are interpolated to give the inbetween complete

representation #OðGðtÞÞ; tA½0; 1�; (3) an inbetween poly-

gon GðtÞ is constructed from #OðGðtÞÞ: The first step has

Fig. 4. Choice (3): (a) spherical coordinates; (b) the parameter domain of ðyi ;fiÞ and the collinearity on the sides: fi ¼ 0; fi ¼ p:

Fig. 5. The setup for the complete representation.
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been described in Section 3, so we shall discuss steps 2

and 3 only. Denote the two complete representations by

#OðGAÞ ¼ fPA
0 ;O

Ag
[

OðGAÞ

where OðGAÞ ¼ ffcA
i g

n
i¼1; ff

A
i g

n
i¼2; fy

A
i g

n
i¼3g

and

#OðGBÞ ¼ fPB
0 ;O

Bg
[

OðGBÞ

where OðGBÞ ¼ ffcB
i g

n
i¼1; ff

B
i g

n
i¼2; fy

B
i g

n
i¼3g:

Denote the inbetween polygon at time t by GðtÞ; and its

complete representation by

#OðGðtÞÞ ¼ fP0ðtÞ;OðtÞg
[

ffciðtÞg
n
i¼1;

ffiðtÞg
n
i¼2; fyiðtÞg

n
i¼3g:

The parameters in #OðGðtÞÞ are derived as follows:

P0ðtÞ ¼ ð1� tÞPA
0 þ tPB

0 :

The orthogonal matrix OðtÞ is derived with Slerp

interpolation of the unit quaternion presentations of OA

and OB [17]. Note that N0ðtÞ and E1ðtÞ can be extracted

from the first two columns of OðtÞ: Further, we have

ciðtÞ ¼ ð1� tÞcA
i þ tcB

i ;

fiðtÞ ¼ ð1� tÞfA
i þ tfB

i ;

yiðtÞ ¼ ð1� tÞyA
i þ tyB

i :

To ensure that the shortest interpolation path is always

used for interpolating yiðtÞ; when it is detected that jyA
i �

yB
i j > p; yA

i should be incremented or decremented by 2p
so as to make jyA

i � yB
i jpp: Although this update moves

yA
i out of the domain ½�p; pÞ; but it causes no problem in

shape interpolation since the intrinsic parameter yi has

period 2p: We also note that this possible update on yA
i

and the corresponding expansion of its domain does not

affect the analysis in Section 3 on the collinearity of

consecutive vertices in the SVN representation.

The next step is to compute the vertices of GðtÞ from
#OðGðtÞÞ: Initially, with P0ðtÞ; E1ðtÞ and N0ðtÞ known, the
vertex P1ðtÞ can be computed as P1ðtÞ ¼ P0ðtÞ þ
c1ðtÞE1ðtÞ: Suppose that Ni�2ðtÞ; Ei�1ðtÞ; and Pi�1ðtÞ
have been computed, where iX2: We now wish to

compute PiðtÞ; as well as Ni�1ðtÞ and EiðtÞ: See Fig. 4.

Since the angle between Ni�1ðtÞ and Ni�2ðtÞ is yiðtÞ; we
have

Ni�1ðtÞ ¼ cos yiðtÞNi�2ðtÞ þ sin yiðtÞðEi�1ðtÞ � Ni�2ðtÞÞ:

ð2Þ

Since Ei�1ðtÞ and EiðtÞ form angle fiðtÞ and both lie in

the plane with normal vector Ni�1; we have

EiðtÞ ¼ cos fiðtÞEi�1ðtÞ þ sinfiðtÞðNi�1ðtÞ � Ei�1ðtÞÞ:

ð3Þ

It follows that

PiðtÞ ¼ Pi�1ðtÞ þ ciðtÞEiðtÞ: ð4Þ

Combining these expressions yields

PiðtÞ ¼Pi�1ðtÞ þ ciðtÞ½cos fiðtÞEi�1ðtÞ

þ sin fiðtÞ cos yiðtÞðNi�2ðtÞ � Ei�1ðtÞÞ

þ sin fiðtÞ sin yiðtÞNi�2ðtÞ�: ð5Þ

This shows that PiðtÞ � Pi�1ðtÞ is represented by the

spherical coordinates ciðtÞ; fiðtÞ and yiðtÞ in the

orthonormal frame spanned by the vectors Ni�2ðtÞ �
Ei�1ðtÞ; Ni�2ðtÞ; and Ei�1ðtÞ: See Fig. 4. With Ni�1ðtÞ and
EiðtÞ being given above, the subsequent vertices of GðtÞ
can be computed iteratively.

An example of polygon morphing produced by the

SVN representation is shown in Fig. 6. A stick-figure is

used here for graphics display, for otherwise the

polygons would look too thin to be visible if shown as

line segments.

4.2. Criteria for shape blending methods

We now show that the SVN method satisfies the

following properties.

Shape continuity: The inbetween polygon GðtÞ is

continuous for tA½0; 1�: That is, there is no sudden change

of shape, size, position, or orientation during shape

blending.

Identity preserving: If the source polygons GA and GB

are identical in shape, size, position, and orientation, then

GðtÞ is identical with GA and GB for any tA½0; 1�:
Shape preserving: If the source polygons GA and GB

have the same shape and size but differ by a rigid motion,

then GðtÞ also has the same shape and size as GA and GB

for any tA½0; 1�: That is, the only difference between GðtÞ
and GA (or GB) is a rigid motion.

Feature preserving: If two corresponding features on the

source polygons GA and GB have the same shape and size,

then their corresponding feature on GðtÞ has the same

shape and size for any tA½0; 1�:

Fig. 6. Shape blending of 3D polygons by the SVN method.
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The feature preserving property means that, given two

3D polygons GA and GB; if a part of polygon GA has the

same shape and size as its corresponding part on

polygon GB; then the shape and size of this part should

be preserved in shape blending; thus this property is

stronger than the shape preserving property.

Since the intrinsic values ci; yi; and fi are locally

defined, the SVN method has the identity preserving

property, the shape preserving property, and the feature

preserving property. Below we shall prove that the SVN

method has the shape continuity property, i.e., given any

two source polygons, the parameterized inbetween

polygon GðtÞ is continuous in t: In order to speak of

shape continuity in this context, we define the metric in

the space of 3D polygons of n þ 1 vertices to be

dðGA;GBÞ ¼
Xn

i¼0

jPA
i � PB

i j

for two polygons GA ¼ fPA
i g

n
i¼0 and GB ¼ fPB

i g
n
i¼0:

We use an inductive argument. It is obvious that the

initial position and orientation of GðtÞ are continuous in
t; that is, P0ðtÞ; P1ðtÞ; E1ðtÞ; and N0ðtÞ are continuous.

Now suppose that Ni�2ðtÞ; Ei�1ðtÞ; and Pi�1ðtÞ are

continuous. Then from formulas (2), (3), and (4), we

see that Ni�1ðtÞ; EiðtÞ; and PiðtÞ are also continuous,

since yiðtÞ; fiðtÞ; and ciðtÞ are continuous. Hence, GðtÞ is
continuous in t since all its vertices are. This completes

the proof of the shape continuity property.

The above four properties can similarly be formulated

as criteria for evaluating shape blending methods for

other objects. Although these criteria reflect basic and

reasonable requirements on shape blending, some

existing methods fail to satisfy them. For instance, the

shape blending method based on the Minkowski sum for

3D polyhedra in [9] does not have the identity preserving

property for non-convex polyhedra. The shape blending

method in [7] for 3D polygons does not possess the

shape preserving property. The method in [15] for 3D

polygons does not possess the shape continuity prop-

erty.

We note that, the mapping from the geometry of a 3D

polygon to its SVN representation is not continuous.

The discontinuity, or singularity, occurs when three

consecutive vertices of a polygon are collinear. This is

illustrated in Fig. 7. Polygon G (Fig. 7(a)) has three

collinear vertices Pi�1; Pi; and Piþ1: Perturb Pi to get

two slightly different polygons GA and GB in Fig. 7(b),

which are identical with G except for vertices PA
i and PB

i :
Vertex PA

i is on the opposite side of PB
i in the plane

x ¼ 0: So the normal vectors NA
i and NB

i are opposite to

each other. Since jjPA
i � Pi jjod and jjPB

i � Pi jjod for a

sufficiently small value d > 0; dðGA;GBÞo2d: However,

for these two polygons we have yA
iþ1 ¼ 0 and yA

iþ2 ¼ 0;
but yB

iþ1 ¼ �p and yB
iþ2 ¼ �p: That is, a small difference

between GA and GB gives rise to a big difference in the

parameter values of their SVN representations.

Despite this discontinuity in the mapping from

polygon geometry to the SVN representation, the

inbetween polygon generated by the SVN method is

still well behaved and changes its shape continuously,

i.e., when two source polygons GA and GB are close to

each other, the inbetween polygon GðtÞ is also close to

GA and GB: That is because this singularity occurs only

when three consecutive vertices Pi�2; Pi�1; and Pi are

nearly collinear, in which case we always have fiE0 or

p; or, equivalently, sinfiE0; which ‘scales down’ the

singularity introduced by yi in formula (5) for con-

structing the inbetween polygon. For the example in

Fig. 7. Mapping discontinuity from geometry to SVN representation.
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Fig. 7, PiðtÞ rotates around the side Pi�1PiPiþ1 from PA
i

to PB
i ; while keeping jPiðtÞ � Pi�1ðtÞj and jPiþ1ðtÞ � PiðtÞj

unchanged. That is, the deviation of PiðtÞ from the side

Pi�1PiPiþ1 is less than d for any tA½0; 1�: Hence, the

shape continuity property is not violated.

4.3. Sensitivity to source polygons

The input to the SVN method consists of two source

polygons. The output, or the result of shape blending, is

a parameterized inbetween polygon changing continu-

ously from one source polygon to another. We wish to

know whether a small change in the source polygons will

cause a big difference in the way the inbetween polygon

changes its shape. This issue may be regarded as the

continuity problem of the mapping from the space of

input polygons to the space of output polygon

sequences, which should be distinguished from the shape

continuity property addressed in Section 4.1.

The output of the SVN method turns out to be

sensitive to a perturbation in source polygons in some

singular cases. This is illustrated in Fig. 8. Consider

polygons G ¼ fA;B;C;Dg; G1 ¼ fA;B;C;D1g; G2 ¼
fA;B;C;D2g; and G0 ¼ fA0;B0;C0;D0g: When the value

of d > 0 is very small, i.e., D1 ¼ ð0; 1;�dÞ and D2 ¼
ð0; 1; dÞ are both close to D ¼ ð0; 1; 0Þ; and G1 and G2 can

be thought of as being obtained from G through some

perturbations. Clearly, using the SVN method, the shape

transformation from G1 to G0 is different from the shape

transformation from G2 to G0; since the sides CD1 and

CD2 rotate in opposite directions about C towards the

side C0D0: This means that a small difference between

the pair (G1; G0) and the pair (G2; G0) causes their

respective inbetween polygons to undergo radically

different shape transformation processes.

The apparent reason for this is that, although the

points D1 and D2 are close to each other, their

corresponding angle parameters yD1
¼ p� e1 and yD2

¼
�pþ e2 differ greatly, where e1 > 0 and e2 > 0 are two

small values, while yD0 ¼ 0 for D0 on G0: So the

interpolation from D1 to D0 and the interpolation from

D2 to D0 follow different paths as the intrinsic parameter

y is interpolated in different intervals ½0; p� e1� and

½�pþ e2; 0�; respectively, in these two cases. This

analysis shows that the sensitivity problem occurs only

when a source polygon with one of its y values near the

ends of the parameter domain (i.e., p or �p) is

perturbed.

However, further inspection reveals that this sensitive

of the inbetween polygon to source polygons is actually

inherent to the shape blending problem of 3D polygons.

In the above example, if one wants to change polygon G
into G0; while keeping the vertex angle at C unchanged,

as required by the shape preserving property, then there

are two shortest ways to rotate CD; i.e., either through
CD1 or through CD2: This ambiguity about which of the

two shortest paths the side CD should take cannot be

resolved by any shape blending method for 3D polygons

that has the shape preserving property. Hence, with the

requirement on being shape preserving, the sensitivity

problem should not be regarded as a defect of a

particular shape blending method for 3D polygons.

5. Conclusion

We have studied the intrinsic representations of a 3D

polygon for shape blending of 3D polygons. It is shown

that only one of these representations is suitable for

shape blending in that it yields continuous shape

transformations in all cases. This representation is a

natural extension to the intrinsic functions of a

differentiable space curve, i.e., the curvature and

torsion. Some further properties of this intrinsic

representation have been discussed.

It would be an interesting problem to extend the

intrinsic representation considered here to the shape

blending of skeleton figures which have tree structures in

the graph-theoretical sense.

Fig. 8. Sensitivity to source polygons.
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